

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет» (ФГБОУ ВО «СамГТУ»)

УТВЕРЖДЕНА

методическим советом ИДО И.о. директора ИДО С.А. Ефимова «26» декабря 2023 г.

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА повышения квалификации

Практические вопросы проектирования подстанций и расчет установок релейной защиты и автоматики (РЗА)

Самара 2023 г.

СОДЕРЖАНИЕ

1. Общая характеристика программы	стр 4
1.1. Цель реализации программы	стр 4
1.2. Нормативная правовая база	стр 4
1.3. Планируемые результаты обучения	стр 4
1.4. Категория слушателей	стр 5
1.5. Форма и продолжительность обучения, срок освоения	стр 5
1.6. Документ о квалификации	стр 5
2. Организационно-педагогические условия реализации програм	мы стр 5
2.1. Кадровое обеспечение	стр 5
2.2. Учебно-методическое, информационное и материально-	стр 6
техническое обеспечение программы	
3. Содержание программы	стр 7
3.1. Календарный учебный график	стр 7
3.2. Учебный план	стр 7
4. Рабочая программы дисциплин (модулей), формы аттестации и	стр 8
оценочные материалы	
4.1. Рабочая программа модуля «Практические вопросы проектирования подстанций и расчет установок релейной защиты и автоматики (P3A)»	стр 8
4.1.2. Учебно-методическое, информационное и материально техническое обеспечение дисциплины (модуля)	- стр 9
4.1.3. Формы аттестации и оценочные материалы	стр 10

1. Общая характеристика программы

1.1. Цель реализации программы

Цель реализации программы: актуализация и формирование у слушателей необходимых профессиональных знаний и умений соответствующего уровня квалификации в области профессиональной деятельности по проектированию электрической части подстанций и обслуживанию, наладке и ремонту устройств релейной защиты и автоматики.

1.2. Нормативная правовая база

Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».

Приказ Министерства образования и науки Российской Федерации от 01.07.2013 г. № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

Письмо Министерства образования и науки Российской Федерации от 21.04.2015 № ВК-1013/06 «О направлении методических рекомендаций по реализации дополнительных профессиональных программ» (вместе с «Методическими рекомендациями по реализации дополнительных профессиональных программ с использованием дистанционных образовательных технологий, электронного обучения и в сетевой форме»).

Профессиональный стандарт «Работник по обслуживанию и ремонту оборудования релейной защиты и автоматики электрических сетей», утвержден Приказом Министерства труда и социальной защиты РФ от 29 июня 2017 г. № 524н

1.3. Планируемые результаты обучения

Таблица 1.1

Профессиональные			таолица т.т
компетенции	Знания	Умения	Практический опыт
ПК-1 Способен участвовать в проектировании объектов электроэнергетики	Знать схемы и параметры, принципы работы, технические характеристики, конструктивные особенности основного электротехнического и коммутационного оборудования электростанций и подстанций	Уметь определять параметры электрических аппаратов, машин, оборудования электрических станций и подстанций	Владеть методами расчета параметров электрооборудования электрических станций и подстанций.
ПК-2 Выполняет сбор и анализ данных для проектирования, составляет конкурентноспособные варианты технических решений объектов электроэнергетики.	Назначение, требования, принципы выполнения, характеристики, схемы, элементную базу, номенклатуру выпускаемых промышленностью устройств релейной защиты и автоматики, управления аварийными режимами, устанавливаемых на объектах электроэнергетических систем.	Осуществлять разработку принципиальных и монтажных схем устройств релейной защиты и автоматики объектов электроэнергетических систем.	Владеть методами расчета параметров устройств релейной защиты и автоматики

Профессиональные компетенции	Нормативный документ (название,				
	реквизиты)				
	«Работник по обслуживанию и ремонту				
	оборудования релейной защиты и				
ПК-1, ПК-2	автоматики электрических сетей»,				
11111-1, 11111-2	Утвержден приказом Министерства труда и				
	социальной защиты Российской Федерации				
	от 09.11.2021 № 786н				

1.4. Категория слушателей

Лица, имеющие среднее профессиональное и (или) высшее образование; лица, получающие среднее профессиональное и (или) высшее образование.

1.5. Форма и продолжительность обучения, срок освоения

Форма обучения – очная.

Срок освоения: 72 часа, в том числе 16 часов — лекции, 24 часа — практические занятия, 30 часов лабораторных занятий, 2 часа — проведение итоговой аттестации.

Продолжительность обучения: 2 недели.

1.6. Документ о квалификации

Обучающимся, успешно освоившим программу, выдается удостоверение о повышении квалификации установленного образца.

2. Организационно-педагогические условия реализации программы

2.1. Кадровое обеспечение

Реализация программы обеспечивается профессорско-преподавательским составом СамГТУ.

Таблица 2

ФИО преподавателя / ведущего специалиста	Специальность, присвоенная квалификация по диплому	Место работы, должность (основное место работы)	Дополнительные квалификации (диплом по переподготовке, если документ имеет отношение к преподаваемой дисциплине / теме)	Ученая степень, ученое (почетное) звание	Наименование преподаваемой дисциплины (модуля), практики/стажир овки / темы / раздела
Мигунова Людмила Геннадьевна	Инженер, Автоматическое управление электроэнергетиче скими системами	СамГТУ, кафедра «Электрические станции», доцент	-	к.т.н.	Защита ЛЭП от междуфазных КЗ. Защита трансформаторо в и автотрансформа торов. Виды устройств и принципы выполнения ПАУ.
Скрипачев Михаил Олегович	Инженер, Электрические станции	СамГТУ, кафедра «Электрические станции», доцент	-	к.т.н.	Выбор способов ограничения токов к.з. Основные понятия об РЗА в ЭЭС. Защита ЛЭП от замыканий 1

					фазы на землю.
Макаров Ярослав Викторович	Магистр техники и технологии, Электроэенргетика	СамГТУ, кафедра «Электрические станции», ст. преподаватель	-	-	Проектирование главной электрической схемы. Выбор схем распределитель ных устройств. Проектирование распределитель ного устройства.

2.2. Учебно-методическое, информационное и материальнотехническое обеспечение программы

Для проведения аудиторных занятий используются учебные аудитории, оснащенные техническими средствами обучения (мультимедийным и презентационным оборудованием) для представления учебной информации. Для проведения практических занятий и лабораторных занятий используется лаборатория микропроцессорных защит (тренажёрный класс, оснащенный устройствами РЗА; стенды с лабораторным оборудованием и УРЗА).

Учебно-методическое и информационное обеспечение программы

- 1. Микропроцессорная релейная защита и автоматика электрических машин: учебное пособие / И.Л. Кузьмин, И.Ю. Иванов, Ю.В. Писковацкий [и др.]. Казань: КГЭУ, 2021. 125 с.
- 2. Релейная защита электрооборудования электрических станций, сетей и систем: учебное пособие для СПО / Л.Г. Мигунова, А.И. Земцов, Е.М. Шишков, А.В. Гофман. Саратов: Профобразование, 2022. 204 с. ISBN 978-5-4488-1406-8. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/116292.html
- 3. Микропроцессорные устройства релейной защиты оборудования, установленного на ТЭЦ./ Л. Г. Мигунова, А. И. Земцов, А.С. Гнеушев. Самара, СамГТУ, 2021. -145 с.
- 4. Костылев Б.И., Добросотских А.С. Разработка электрической части электростанций, учебное пособие по курсовому проектированию. СамГТУ, Самара, 2009.
- 5. Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций. Справочные материалы для курсового и дипломного проектирования М. Энергоатомиздат, 1989.
- 6. Рожкова Л.Д. и др. Электрооборудование электрических станций и подстанций. М. Издательство НЦ ЭНАС, 2013.

Интернет-ресурсы

- 1. http://elib.gubkin.ru Электронная нефтегазовая библиотека РГУ нефти и газа им. И.М. Губкина.
- 2. http://elibrary.ru Научная электронная библиотека eLIBRARY.RU
- 3. http://link.springer.com Издательство SpringerScience (научные и научнопопулярныежурналы по химии и материаловедению, компьютерным наукам, биологическим наукам, бизнесу и экономике, экологии, инженерии, гуманитарным и социологическим наукам, математике и статистике, медицине, физике и астрономии, архитектуре и дизайну)
- 4. http://n-t.ru Электронная библиотека «Наука и техника»
- 5. http://oglibrary.ru Электронная библиотека технической литературы «Нефть и

газ».

- 6. http://rsl.ru Полнотекстовые ресурсы библиотеки диссертаций РГБ
- 7. http://www.sciencedirect.com Полнотекстовая база данных издательства «ELSEVIER» FREEDOMCOLLECTION на платформе ScienceDirect
- 8. http://www.tehlit.ru Электронная библиотека Тех.Лит.ру
- 9. http://www.tehlit.ru Электронная библиотека Тех.Лит.ру
- 10. ТехЛит.ру http://www.tehlit.ru/.
- 11. сайт кафедры «ЭС» ФГБОУ ВО «СамГТУ»
- 12. Библиотека учебно-методической литературы системы «Единое окно» http://window.edu.ru/
- 13. Вестник СамГТУ. Серия «Технические науки»

3. Содержание программы

3.1. Календарный учебный график

ЛЗ – лекционные занятия

ПЗ – практические занятия

ЛР – лабораторная работа

СР – самостоятельная работа

ИА – итоговая аттестация

Календарный учебный график

Таблица 3.1

r		1 -	1.4				
Виды занятий	1 неделя	2 неделя	Итого часов				
Л3	8	8	16				
П3	12	12	24				
ЛР	16	14	30				
CP	-	_	-				
ИА			2				
			-				
Всего часов	Reero uacop						
50010 10005			72				

3.2. Учебный план

Учебный план

Таблица 3.2

N п/ п	Наименование дисциплины (модуля), раздела / практики (стажировки)	Всего (ч)	ЛЗ (ч)	ЛЗ (эл. ч)	ПЗ (ч)	ПЗ (эл.ч)	ЛР (ч)	СР (ч)	Форма ИА	Код компетенции
1.	Раздел 1. Проектирование главной электрической схемы.	8	4	-	4	-	-	-		ПК-1
2.	Раздел 2. Выбор способов ограничения токов к.з.	8	4	-	4	-	-	-		ПК-1
3.	Раздел 3. Выбор схем распределительных устройств. Проектирование распределительного устройства.	10	4	-	6	-	-	-		ПК-1

4.	Раздел 4. Основные понятия об РЗА в ЭЭС	8	4	-	4	-	-	-		ПК-1
5.	Раздел 5. Защита ЛЭП от междуфазных КЗ	8	-	-	4	-	4	-		ПК-1
6.	Раздел 6. Защита ЛЭП от замыканий 1 фазы на землю	8	-	-	4	-	4	1		ПК-1
7.	Раздел 7. Защита трансформаторов и автотрансформаторов	12	-	-	8	-	4	-		ПК-1, ПК-4
8.	Раздел 8. Виды устройств и принципы выполнения ПАУ	8	4	-	4	-	-	-		ПК-1
	Итоговая аттестация	2							Зачет	ПК 1, ПК 2

4. Рабочая программы дисциплин (модулей), формы аттестации и оценочные материалы

4.1. Рабочая программа модуля «Практические вопросы проектирования подстанций и расчет установок релейной защиты и автоматики (P3A)»

Таблица 4

		ПО /		аблица
Номер раздела и его наименование	Содержание	Л3 / ч	П3 / ч	ЛР / ч
Раздел 1. Проектирование	Требования. Порядок выбора. Выбор схемы	4	4	
главной электрической схемы.	присоединения электростанции к системе.	7	T	
Thablier offertpulledron exclubit	Структурные схемы ТЭЦ. Структурные схемы			
	КЭС. Структурные схемы подстанций.			
Раздел 2. Выбор способов	Выбор токоограничивающих средств на	4	4	_
ограничения токов к.з.	блочных ТЭС. Выбор токоограничивающих			
	средств на генераторном напряжении ТЭЦ.			
Раздел 3. Выбор схем	Показатели надежности элементов.	4	6	-
распределительных устройств.	Показатели надежности электроустановок.			
Проектирование	Требования к РУ. Проектирование закрытых			
распределительного устройства.	РУ. Требования к РУ 35-750 кВ.			
	Проектирование открытых РУ. Схемы			
	соединения ТТ и ТН в устройствах РЗА.			
	Погрешности трансформаторов тока.			
	Расчетная проверка трансформаторов тока			
	для релейной защиты.			
Раздел 4. Основные понятия об	Чувствительность, надежность,	4	4	-
РЗА в ЭЭС	селективность, быстродействие. Виды			
	повреждений. Виды защит.			
Раздел 5. Защита ЛЭП от	Назначение и основные виды защит ЛЭП от	-	4	4
междуфазных КЗ	междуфазных КЗ. Принцип действия и			
	параметры срабатывания токовой отсечки			
	ЛЭП. Принципиальные схемы токовой			
	отсечки. Принцип действия и параметры			
	срабатывания максимальной токовой защиты			
	ЛЭП. Принципиальные схемы максимальной			
	токовой защиты ЛЭП. Сочетание токовой			
	отсечки и максимальной токовой защиты.			
	Принцип действия и разновидности			
	дифференциальных защит ЛЭП. Принципы			
B 0.0 F0F	действия высокочастотных защит ЛЭП.		4	4
Раздел 6. Защита ЛЭП от	Токи и напряжения в сети с изолированной	-	4	4
замыканий 1 фазы на землю	нейтралью при однофазном замыкании на			
	землю. Принципы выполнения неселективной			
	сигнализации однофазных замыканий на			
	землю. Принципы выполнения селективных			
	защит однофазных замыканий на землю.			
	Защита от коротких замыканий на землю в			

	сети с глухозаземленной нейтралью.			
Раздел 7. Защита	Нарушения нормальных режимов и	-	8	4
трансформаторов и	требования к защитам. Токовая отсечка для			
автотрансформаторов	трансформатора и автотрансформатора.			
	Дифференциальная защита. Назначение и			
	принцип действия. Выравнивание вторичных			
	токов. Токи небаланса в дифференциальной			
	защите трансформатора. Ток			
	намагничивания. Газовые защиты			
	трансформаторов и автотрансформаторов.			
	Микропроцессорные защиты			
	трансформаторов и автотрансформаторов.			
Раздел 8. Виды устройств и	Автоматические устройства для	4	4	-
принципы выполнения ПАУ	регулирования параметров ЭЭС в			
	нормальных режимах (режимная			
	автоматика). Автоматические устройства для			
	управления энергосистемой в аварийных			
	режимах- релейная защита, сетевая и			
	специальная противоаварийная автоматика.			
	Структура УРЗА. Разновидности			
	электрических реле. Требования к реле,			
	применяемым в УРЗА.			

4.1.2. Учебно-методическое, информационное и материальнотехническое обеспечение дисциплины (модуля)

Для проведения аудиторных занятий используются учебные аудитории, оснащенные техническими средствами обучения (мультимедийным и презентационным оборудованием) для представления учебной информации. Для проведения практических занятий и лабораторных занятий используется лаборатория микропроцессорных защит (тренажёрный класс, оснащенный устройствами РЗА; стенды с лабораторным оборудованием и УРЗА).

Учебно-методическое и информационное обеспечение программы

- 1. Микропроцессорная релейная защита и автоматика электрических машин: учебное пособие / И.Л. Кузьмин, И.Ю. Иванов, Ю.В. Писковацкий [и др.]. Казань : КГЭУ, 2021. 125 с.
- 2. Релейная защита электрооборудования электрических станций, сетей и систем: учебное пособие для СПО / Л.Г. Мигунова, А.И. Земцов, Е.М. Шишков, А.В. Гофман. Саратов: Профобразование, 2022. 204 с. ISBN 978-5-4488-1406-8. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт].
- URL: https://www.iprbookshop.ru/116292.html
- 3. Микропроцессорные устройства релейной защиты оборудования, установленного на ТЭЦ./ Л. Г. Мигунова, А. И. Земцов, А.С. Гнеушев. Самара, СамГТУ, 2021.-145 с.
- 4. Костылев Б.И., Добросотских А.С. Разработка электрической части электростанций, учебное пособие по курсовому проектированию. СамГТУ, Самара, 2009.
- 5. Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций. Справочные материалы для курсового и дипломного проектирования М. Энергоатомиздат, 1989.
- 6. Рожкова Л.Д. и др. Электрооборудование электрических станций и подстанций. М. Издательство НЦ ЭНАС, 2013.

Интернет-ресурсы

- 1. http://elib.gubkin.ru Электронная нефтегазовая библиотека РГУ нефти и газа им. И.М. Губкина.
- 2. http://elibrary.ru Научная электронная библиотека eLIBRARY.RU

- http://link.springer.com Издательство SpringerScience (научные и научнопопулярныежурналы по химии и материаловедению, компьютерным наукам, биологическим наукам, бизнесу и экономике, экологии, инженерии, гуманитарным и социологическим наукам, математике и статистике, медицине, физике и астрономии, архитектуре и дизайну)
- 4. http://n-t.ru Электронная библиотека «Наука и техника»
- 5. http://oglibrary.ru Электронная библиотека технической литературы «Нефть и газ»
- 6. http://rsl.ru Полнотекстовые ресурсы библиотеки диссертаций РГБ
- 7. http://www.sciencedirect.com Полнотекстовая база данных издательства «ELSEVIER» FREEDOMCOLLECTION на платформе ScienceDirect
- 8. http://www.tehlit.ru Электронная библиотека Тех.Лит.ру
- 9. http://www.tehlit.ru Электронная библиотека Тех.Лит.ру
- 10. ТехЛит.py http://www.tehlit.ru/.
- 11. сайт кафедры «ЭС» ФГБОУ ВО «СамГТУ»
- 12. Библиотека учебно-методической литературы системы «Единое окно» http://window.edu.ru/
- 13. Вестник СамГТУ. Серия «Технические науки»

4.1.3. Формы аттестации и оценочные материалы

Итоговый контроль успеваемости осуществляется по итогам освоения программы в форме зачета.

«Зачтено» выставляется, если сформированность заявленных дескрипторов компетенций на 50% И более оценивается не ниже «удовлетворительно» при условии отсутствия критерия «неудовлетворительно». Выставляется, когда обучающийся показывает хорошие знания изученного учебного материала; самостоятельно, логично и последовательно излагает и интерпретирует материалы учебного курса; полностью раскрывает смысл предлагаемого вопроса; владеет основными терминами и понятиями изученного курса; показывает умение переложить теоретические знания на предполагаемый практический опыт.

«Не зачтено» – выставляется, если сформированность заявленных дескрипторов компетенций менее чем 45% оценивается критериями «удовлетворительно», «хорошо» и «отлично»: при ответе обучающегося выявились существенные пробелы в знаниях основных положений фактического материала, неумение с помощью преподавателя получить правильное решение конкретной практической задачи из числа предусмотренных рабочей программой учебной дисциплины.

Примерные вопросы к зачету

- 1. Особенности процессов производства и распределения электроэнергии.
- 2. Виды электротехнического оборудования электроэнергетических систем и способы представления оборудования в электрических схемах.
- 3. Электрические сети трехфазного переменного тока с глухозаземленной нейтралью. (Построение сетей, виды повреждений).
- 4. Электрические сети трехфазного переменного тока с изолированной нейтралью (Построение сетей, виды повреждений).
- 5. Назначение и виды автоматических устройств для регулирования параметров ЭЭС в нормальных режимах.
- 6. Назначение и виды автоматических устройств для управления ЭЭС в аварийных режимах.

- 7. Последствия коротких замыканий в ЭЭС и необходимые действия устройств релейной защиты и автоматики.
- 8. Основные требования к устройствам релейной защиты и автоматики.
- 9. Структура устройств релейной защиты и автоматики (основные части, их назначение и состав).
- 10. Разновидности электрических реле применяемых в УРЗА.
- 11. Требования к измерительным и к вспомогательным реле, применяемым в УРЗА.
- 12. Назначение и основные виды защит линий электропередач от междуфазных коротких замыканий.
- 13. Принцип действия, параметры срабатывания, принципиальная схема токовой отсечки ЛЭП.
- 14. Принцип действия, параметры срабатывания, временная характеристика, принципиальная схема максимальной токовой защиты ЛЭП.
- 15. Двухступенчатая токовая защита ЛЭП (параметры срабатывания, временная характеристика, принципиальная схема).
- 16. Принцип действия, параметры срабатывания, временная характеристика, принципиальная схема максимальной токовой направленной защиты ЛЭП.
- 17. Принцип действия, параметры срабатывания, временная характеристика трехступенчатой дистанционной защиты ЛЭП.
- 18. Принципиальная схема трехступенчатой дистанционной защиты ЛЭП в однолинейном изображении. Характеристики реле сопротивления.
- 19. Принцип действия и разновидности дифференциальных защит ЛЭП.
- 20. Принцип действия высокочастотных защит ЛЭП.
- 21. Назначение, принцип действия, временная характеристика, принципиальная схема токовой защиты нулевой последовательности сети с глухозаземленной нейтралью.
- 22. Векторные диаграммы токов и напряжений при однофазном замыкании в сети с изолированной нейтралью.
- 23. Принципы выполнения неселективных защит (сигнализации) при однофазных замыканиях на землю в сети с изолированной нейтралью.
- 24. Принципы выполнения селективных защит от однофазных замыканий на землю в сети с изолированной нейтралью.
- 25. Назначение и виды защит высоковольтных электродвигателей.
- 26. Защита высоковольтных электродвигателей мощностью до 2000 кВт, параметры срабатывания защит, схема защиты на постоянном оперативном токе, с независимой характеристикой времени действия при перегрузке.
- 27. Защита высоковольтных электродвигателей мощностью до 2000 кВт, параметры срабатывания защит, схема защиты на переменном оперативном токе, с зависимой характеристикой времени действия при перегрузке.
- 28. Особенности защит электродвигателей на микропроцессорной элементной базе по сравнению с защитами на электромеханических реле.
- 29. Структурная схема микропроцессорной защиты высоковольтного электродвигателя.
- Виды повреждений и ненормальных режимов трансформаторов и автотрансформаторов, требования к защитам.
- 31. Виды защит, их назначение, параметры срабатывания и зоны действия защит трехфазных двухобмоточных трансформаторов с напряжением 6(10)/0,4 кВ.
- 32. Виды защит, их назначение, зоны действия защит трансформаторов с высшим напряжением 110 кВ и более.
- 33. Принцип действия и схема дифференциальной защиты трансформаторов и автотрансформаторов, причины появления токов небаланса.
- 34. Виды повреждений и ненормальных режимов синхронных генераторов и требования к защитам.
- 35. Принцип действия, схема, зона действия защиты от междуфазных КЗ в обмотке статора генератора.

- 36. Принцип действия, схема, зона действия защиты от замыканий между витками одной фазы обмотки статора генератора.
- 37. Принцип действия, зона действия защиты от замыканий на землю обмотки статора генераторов.
- 38. Принцип действия, зона действия защиты генератора от сверхтоков при внешних КЗ и от перегрузок.
- 39. Особенности защит блоков генератор-трансформатор, взаимодействие защит блоков от повреждений и ненормальных режимов с технологическими защитами.
- 40. Виды основных и резервных защит блоков генератор-трансформатор, зоны действия защит.
- 41. Назначение, принцип действия, способы повышения чувствительности защиты сборных шин электростанций и подстанций.
- 42. Принципиальная схема защиты сборных шин подстанции с фиксированным присоединением элементов, поведение схемы при КЗ на шинах и при внешних КЗ при нормальной и при нарушенной фиксации элементов.
- 43. Способы резервирования отказов релейной защиты линий электропередач и электротехнического оборудования.
- 44. Способы резервирования отказов действия высоковольтных выключателей.
- 45. Виды режимов электроэнергетических систем, задачи противоаварийного управления режимами ЭЭС. Назначение, технико-экономическая эффективность, требования, разновидности устройств автоматического повторного включения выключателей линий электропередач (АПВ).
- 46. Принцип действия устройств АПВ. Схема трехфазного однократного электрического АПВ линий с односторонним питанием.
- 47. Особенности АПВ линий с двухсторонним питанием, виды АПВ, особенности пусковых цепей схем УАПВ.
- 48. Назначение, технико-экономическая эффективность автоматического включения резервного питания потребителей (АВР), способы организации резервного питания потребителей на электростанциях и подстанциях.
- 49. Требования к работе устройств АВР. Способы реализации их в схемах УАВР.
- 50. Понятия об устойчивости параллельной работы электростанций в энергосистемах, статическая и динамическая устойчивость ЭЭС и критерии их оценки.
- 51. Основные принципы функционирования автоматических устройств при возникновении аварийных режимов (АПНУ и АЛАР).
- 52. Принципы выполнения автоматических устройств ограничения повышения (АОПН) и снижения напряжений (АОСН).
- 53. Принципы выполнения автоматических устройств ограничения повышения (АОПЧ) и снижения частоты (АОСЧ). Автоматическая частотная разгрузка (АЧР).